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Frequency responses have been derived for four mathematical models of the trickle flow 
in a packed bed column. The models contain gradually one to four parameters. Asymptotic 
expressions have been also obtained for the frequency responses under large values ;f the Peclet 
number. A possibility has been tested of using the complex arithmetic feature of a computer 
to evaluate numerically the model responses and to separate the real and the imaginary part 
of the response. Analysis has shown that all four models can be discriminated and their para­
meters are observable in the complex plane. This approach thus appears plausible for processing 
real experimental data as well as for the discrimination between various models. 

The counter-current arrangement of the flow of liquid and gas has been currently 
utilized in a number of processes involving the transfer of mass and heat (absorption, 
absorption with chemical reaction, distillation, catalytic operations, etc.) as it provides 
for intensive contact of the phases and large driving forces for interfacial transport. 
The liquid phase is uniformly spread over the column cross section by means of a sui­
table distributor of liquid and trickles down in the form of rivulets or film: the gas 
streams in the opposite direction . Under suitable conditions a considerably large 
interfacial surface is created. 

There are two limiting idealized flow situations for the flow of a fluid: "the plug flow" and the 
"ideal mixer". Real flows in continuously operated equipment fall between these two extremes. 
Groenhofl reports that the liquid need not flow in the form of a film over the surface of the 
packing but may form droplets or rivulets. Chanelling may also occur when part of the liquid 
follows faster preferential paths than the rest of the liquid on the packing. This phenomenon 
is due to the inhomogeneous structure of the bed together with the action of the gravity forces 
and surface tension. The preferential channels do not change appreciably with time . In small 
diameter columns with respect to the particle diameter, much of the liquid often flows down the 
column wall. Groenhof 2 reports that this phenomenon, the so called "wall effect" beco mes mani­
fest in columns where 

(1) 

Other works13 , however, recommend even greater values of this ratio, especially for the packing 
of Raschig rings if the wall flow is to be negligible. 
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Another manifestation of the real flow in a packed bed column is the existence of the zones 
with nearly stagnant liquid. This liquid clings to the packing predominantly at the points of contact 
between individual elements of the packing, between the elements of the packing and the column 
wall or in region with very low local flow rate. The specific volume of the column occupied by the 
stagnant liquid under a given flow rate of the liquid phase then determines the stagnant liquid 
hold-up. Between the stagnant and the dynamic region then may occur the exchange of mass , 
but the mechanism of this exchange has not been specified to date. All the described mani­
festations of the real flow of phases in a trickle bed column diminish the effective interfacial 
surface for mass transfer and thus affect mostly adversely the operation of the se paration equip­
ment. Changes of conversion and selectivity occur in chemical reactors. Patwardhan3 ,4, for 
instance, defined an effective interfacial surface for absorption accompanied by chemical reaction 
as follows 

(2) 

The coefficient/was defined as a ratio of the rate of absorption into the stagnant and the dynamic 
region. For a second order reaction Patwardhan expresses / as a function of diffusivity, the 
enhancement factor, concentration, the coefficient of interfacial transfer and the rate of exchange 
of mass between the stagnant and the dynamic region. 

The real states of the flow of liquid between the limiting situations, but closer to the plug 
fl ow, may be described by the mechanism of axial and radial dispersion. Axial dispersion is mostly 
an undesirable phenomenon, diminishing local concentration driving forces for interfacial 
transfer and hence the efficiency of separation equipment or conversion in chemical reactors5 

-7. 

On the contrary radial dispersion, which in design calculations has been often neglected, plays 
frequently a positive role by diminishing radial temperature gradients. However, attempts to in­
crease radial dispersion (e.g. by increased size of particles) may be accompanied by increased 
axial dispersion 7 . The degree of mixing in a bed of packing depends on the mechanism of the flow, 
molecular diffusitivites of individual components and the geometry of the packing in a manner 
that has not been so far fully elucidated. 

The above described phenomena in combination form the characteristic picture of the real 
flow of liquid departing from the idealized forms of the mathematical descriptions. At the same 
time it is apparent tha t physically best founded would be the description (model) which accounts 
for each nonideality by an individualized, not lumped, parameter. Nevertheless, practical design 
calculations of trickle bed equipment utilize mostly the plug flow or the axially dispersed plug 
fl ow model. 

An important parameter of the various models and a characteristic of the hydrodynamics 
of the flow is the hold-up of liquid in its different forms dependent on the measuring method 
and definition in the corresponding model representation. The hold-up of liquid in a trickle 
bed column affects on the one hand the extent of the area of cross section available for the flow 
of gas and hence also the pressure drop under the two phase flow. Further also the turbulence, 
which together with the increased wetted surface intensifies the interfacial transport. In apparatuses 
with chemical reactions especially the slow reactions, the hold-up of liquid affects the yield and 
selectivity, in dependence on the extent to which the conversion takes place within the interfacial 
film and the bulk of liquid. The magnitude of the liquid hold-up is affected by the fl ow rates 
of phases, their physical properties and the geometry of the packed layer. 

Currently used experimental method for the determination of the dynamic hold-up of liquid 
consists of sudden disconnection of the feeds of the gas and the liquid phases and collection 
of the draining Iiquid5 ,6,10-12. Static hold-up then follows from the difference of the volume 
of liquid charged into the dry column and the volume of the drained liquid5

,11. At this point 
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it is necessary to note the difference between the stagnant hold-up (hs) and the static hold-up 
(Irs.)' The static hold-up is formed by the liquid held in the bed by the action of the surface forces 
even after a long period after the shut off of the flows of phases. On the other hand, the stagnant 
hold-up is formed by the liquid occupying the stagnant regions in the bed at non-zero flow rate 
of liquid4

.
8

. The results of some authors 13
,14, however, show that the static hold-up understood 

as given above loses entirely its physical meaning under the flowing conditions. 

Bennett and Goodridge9 considered in their work the axially dispersed flow of liquid in the 
dynamic region and a slow exchange of mass with the stagnant region characterized by a coefficient 
of mass exchange. The value of this coefficient was independent of the flow rate of gas while 
rapidly increased with increasing flow rate of liquid. The authors presumed independence of the 
mentioned coefficient on the size of the packing element and further found that the ratio of the 
stagnant to the dynamic hold-up is independent of the flow rate of gas and decreases with the 
flow rate of liquid. The coefficient of axial dispersion is another important parameter. It must be 
born in mind, however, that numerical values of dispersivity depend fundamentally on the formula­
tion of the model applied to process experimental data. Linek and coworkers5 found greater 
values of the coefficient of axial dispersion in the liquid phase than in the gas. Axially dispersed 
character of the liquid phase flow was considerably affected by the magnitude of the mass transfer 
coefficient. The difference between values of the mass transfer coefficient computed from the 
plug flow model and the axially dispersed model reached as much as 50% of the value of the 
coefficient based on the plug flow. 

Dunn and coworkers6 report that "axial dispersion in the liquid phase is independent of the 
gas phase flow rate, decreases with the increasing velocity of liquid and is substantially greater 
than the axial dispersion in the gas phase. 

The aim of this work has been to derive the transfer functions for a series of model 
flows of the liquid phase under the conditions of the two-phase counter-current 
flow, their transformation into the frequency domain and the examination of ob­
servability of the model parameters from experimental frequency responses, The 
examined models are formulated in the form of differential equations easily amenable 
for modelling the flow interactions with the interfacial transport of mass, heat and the 
course of chemical reactions. 

THEORETICAL 

Starting from a balance of dissolved species over an infinitesimal section of the column 
length the following equation is obtained for the case of the plug flow (PF), assuming 
equal velocity of the flow at all points of the bed 

vaclaz + h aclat =0, (3) 

where h designates the total hold-up of liquid. 

Upon admitting the existence of the stagnant zones, (model SZ), characterized 
by the stagnant liquid hold-up, hs' while in the dynamic part, of the extent given 
by the dynamic liquid hold-up, hd' the liquid flows in plug flow, the balance of the 
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dissolved species is given by 

q(c - cs) + voc/oz = - hd OC/ot , (4) 

where Cs designates concentration in the stagnant liquid. The coefficient q quantifies 
the intensity of mass exchange between the stagnant and the dynamic part of the liquid 
hold-up while the balance of the dissolved species in the stagnant liquid takes the 

following form 
q(c - cs) = hs ocs/ot . (5) 

The axially dispersed model (AD) superimposes axial dispersion on the plug 
flow of liquid. The corresponding balance of dissolved species thus takes the following 
form where D designates the coefficient of axial dispersion 

(6) 

Upon assuming at the same time also the existence of the stagnant zones, together 
with the axial dispersion, the balance of the dissolved species in the dynamic liquid 

is as follows: 
(7) 

The balance in the stagnant liquid remains identical with Eq. (5). This, from the view 
point of the number of parameters the most complex model (ADSZ), is formally 
identical with the model proposed by Bennett and Goodridge9

• By separation of the 
axial dispersion from the effect of the stagnant zones one must expect also a funda­
mentally different numerical values of, for instance, the dispersion coefficient, D. 

Let us now define a quantity C = c - Cstae , where Cst• e is the steady state com­
position of liquid, introduce this quantity into Eqs (3)-(7) and perform the Laplace 

transform. For the case of the PF model one obtains 

v dC/dz + hsC = 0 (8) 

which for the boundary condition 

C = Co for z = 0 (9) 

yields 
C = Co exp (-hsz/v). (10) 

The transfer function for the response of the composition of the outlet liquid 
to a concentration change in the inlet liquid may be written in the form 

G(s) = Cz/Co = exp (-1:5), (11) 
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where T = hZjv is th~ residence time of liquid in the system. In a similar fashion 
one can proceed also in the derivation of the transfer functions for the SZ, AD and the 
ADSZ models. 

In the case of the SZ model one obtains from Eqs (4) and (5) a single first-order 
differential equation to be solved with the boundary condition (9). The transfer 
function then may be written in the form 

G(S) = czjco = exp (-AZ) , (12) 

where 

(13) 

In the case of the AD model we obtain the following equation 

(zjPe) (d 2 Cjdz2
) - (dCJdz) - (TSjZ) C = o. (14) 

Appropriate boundary conditions for this system are the conditions formulated 
by Danckwerts 15 

Co = (C)z=o+ - (ZjPe) (dCjdz)z=o+ for z = 0 

dCjdz = 0 for z = Z . 

For the transfer function then follows 

(15) 

(16) 

G(s) = 4 J(1 + 4TSjPe) 
[1 + J(l + 4TSjPe)Y exp (-X2Z) - [1 - J(l + 4TSjPe)]2 exp (-X1Z) 

(17) 

where 

ZX1,2 = (Pej2) [1 ± J(l + 4TSjPe)] . (18) 

For the case of the ADSZ model one obtains from Eqs (5) and (7) a single second­
-order differential equation: 

(19) 

Upon using the boundary conditions (15) and (16) with the Pe number replaced 
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by Ped' the following form of the transfer function results 

(20) 

where 

and 

, Ped { J[ 4 ( Zqh ss )J} ZA3 ,4 = - 1 ± 1 + - rds + - --- . 
2 Ped v(q + hss) 

(21) 

Formally one derives for the SZ and the ADSZ models also the transfer functions 
for the concentration in the stagnant liquid. This quantity, however, is not measurable 
and the corresponding transfer function therefore has no practical significance. 

Substituting s = iw, the original Laplace transform changes to the Fourier trans­
form. From the transfer functions one thus obtains complex variable functional 
relationships, or the frequency responses to a harmonic perturbation with the fre­

quency as a variable 

G(iw) = exp (-riw) (11 a) 

for the PF model 

(12a) 

for the SZ model where 

(13a) 

In the transformation of the transfer functions into the frequency domain for the 
models incorporating axial dispersion, i.e. the AD and the ADSZ models, we shall 
effect an additional simplification based on the finding that for current values of axial 
dispersivity and not excessively short column, one of the pair of the characteristic 
values (ZA! ,2) and (ZA3,4), given by Egs (18) and (21) is always a large positive 
number. With a sufficient accuracy one may put then the expressions exp (- }' l Z) and 

exp (- A3Z) equal to zero. 
With this simplification we obtain 

(
. ) 4 J (1 + 4TiwfPe) ( ' Z) G IW = exp A2 

[1 + J (1 + 4TiwfPe)J2 
(17a) 
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for the AD model and 

(20a) 

for the ADSZ model, where 

B = J[l 
The justification of the simplification leading to the above expression, i.e. of the 
assumption that 4rw/Pe ~ 1 may be tested with the aid of the following approximate 
expressions valid for the given conditions 

(22) 

(23) 

for the AD model and, similarly for the ADSZ model, we shall obtain the following 
approximations 

(24) 

Making use of the large value of the Peelet number with the depth of the packed 
section as a characteristic parameter (sometimes also the Bode number) to effect 
simplifications one step further, the expressions in Eqs (17a) and (20a) change to 

G(iw) = exp (AlZ) (J7b) 

for the AD model and 

(20b) 

for the ADSZ model. 

These simplified forms of the frequency responses are particularly advantageous 
for the optimization of the model parameters. Owing to the inherent nonlinearity 
of the models with respect to the parameters one must use numerical routines of opti­
mizations calling for repeated calculations of the frequency responses and, eventually, 
their derivatives with respect to the parameters. The simplified expressions for the 
frequency responses thus considerably contribute to the time efficiency of the develo­
ped algorithms. In addition, if the employed simplification proves to be insufficiently 
accurate, the localization of the optimum may be improved by a few extra iterations 
while employing the more accurate expression for the frequency response. 
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The ADSZ models incorporates implicitly all three previous simpler models. 
For instance, in the limit D -+ 0 the ADSZ model reduces to the SZ model; to the AD 
model reduces in the limits q -+ 00 (the hold-up represented by the sum hd + lis) or 
in the limit hs -+ 0 (the hold-up represented by hd). A combination of the limit 
D -+ 0 with some of the other limits reduces the ADSZ model down to the PF model. 
Analogously to the PF model reduce the SZ model (in the limit hs -+ 0 and hence 
also for hd -+ h) and the AD model (in the limit D -+ 0). 

The frequency response of the system may be generally expressed in the form 

G(iw) = Rexp(hp), (25) 

where R is the amplitude ratio of the outlet to the input signal and cp is the phase 
shift (lag) of the outlet signal with respect to the input. A comparison of Eq. (25) 
with the expressions for the frequency responses of the PF and the SZ models (Eqs 
(11 a), (12a)) shows clearly that in these cases we can find direct explicit expressions 
for Rand cpo In case of the AD and the ADSZ models (Eqs (17a), (20a)) the real 
and the imaginary part of the frequency responses cannot be separated analytically, 
Rand cp thus cannot be expressed explicitly. 

j 1M 

-1 

-j 

FIG . 1 

Frequency response G(iw) computed for the 
axially dispersed model v = 7.64.10- 3 mis, 
h = 0·1258, D = 2.308 . 10- 3 m 2 / s. Abscis­
sa: real part of G(iw), ordinate: imaginary 
part ofG(iw) 

Col/ection Czechoslovak Chern. Commun. [Vol. 47] [1982] 

1M 

/ " - , 
" ./ .... --- ...... 
, 

/ " 
, 

I / 
./ " , \ 

I I \ \ 

I f \ \ 

I I 0 I I RE 
-1 

-,-
f I I 1 

I I 
I I I 

\ \ 
\ / I f 

\ , ./ / I 
\ 

, , '- -" ./ I , " , / 
/ 

./ 
I 

'-
" -- - ./ 

" , --
,. 

-i 

FIG. 2 

Part of frequency response G(iw) computed 
for the axially dispersed model v = 7·864 . 
. 10- 3 mis, h = 0·1258, D = 2.308.10- 4 

m2 /s in the frequency range w = 0-0·63 

rad/s 
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CALCULATIONS 

The calculations of the frequency responses were performed on an EC-I033 com­
puter using its complex arithmetics feature enabling numerical separations of the 
real and the imaginary part for given values of the parameters and frequency of the 
input signal. For the AD and the ADSZ models the calculations were carried out 
using Eqs (17 a) and (20a). In the opposite case, i.e. using expressions with both 
characteristic values },' numerical difficulties were experienced stemming from the 
fact that the value )'lZ (or A3Z) fluctuated around the limit causing the underflow 
in the exponent. These difficulties, although not fatal for the evaluation of the res­
ponses proper, may bring about total failure of the routine performing numerical 
evaluation of the derivatives with respect to the parameters, necessitated in the optimi­
zation routine employed. 

The computed frequency responses shall be shown graphically in the form of the 
Nyqyist's diagrams. These diagrams plot on the horizontal axis the real part of the 
response, while the imaginary part is on the vertical axis, with the frequency as 
a parameter. Fig. 1 shows a typical response of the AD model. 

The frequency response derived' from the PF model takes in the complex plane 
always the form of a circle of unit radius independently of the flow rate (for non-zero 
h). This is so because the plug flow does not predict any amplitude damping of the 
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FIG. 3 

Frequency response G(iw) computed for the 
axially dispersed model v = 7·864 . 10- 3 

mis, h = 0·1258, D = 2.308.10- 2 m2 /s 

-i 

FIG. 4 
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Frequency response GUw) computed for the 
model with stagnant zones v = 7.864.10- 3 

mis, hd = 6.85.10- 2 , q = 4.617.10- 2 s-l, 
hs = 5.76.10- 2 
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input concentration signal but merely its shift. As already mentioned the limit D -+ 0 
reduces the AD model to the PF model. Fig. 2 shows the frequency response of the 
same model as in Fig. 1 with a tenfold decrease of the coefficient D. On the contrary 
in the limit D -+ 00 the model approaches the ideal mixer. Fig. 3 shows the function 
G(iw) for the AD model as in Fig. 1 but with a tenfold increase of the coefficient D. 

Fig. 4 shows the frequency response derived from the SZ model in the complex plane. 
In the limit hs -+ 0 (and hence hd -+ h) the SZ model reduces to PF model. Fig. 5 
shows part of the frequency response as that in Fig. 4 for the case hs = 0·1 hd • 

Fig. 6 shows the frequency response for the most sophisticated model examined 
in this work, the ADSZ model. 

CONCLUSIONS 

Analysis of the derived transfer functions has shown that the parameters of the four 
examined models are observable and that the models can be discriminated from the 
frequency responses in the form of the Nyqyist's diagrams. 

The frequency responses of the models incorporating axial dispersion may be 
conveniently studied with the aid of the complex arithmetics of a computer employed 
to separate numerically the real and the imaginary part. The analysis may be facilitated 
when using the asymptotic forms of the expressions for the frequency responses. 

i 1M 

-i 

FIG. 5 

Part of frequency response G(iO) for the 
model with stagnant zones v = 7'864.10- 3 

mis, lid = 0,1146, q = 4·617 . 10- 2 S-l, lzs = 
= 1· 146 . 10 - 2 in the frequency range 0) = 

= 0- 0'63 radls 
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Frequency response G(iO) for the axially 
dispersed model with stagnant zones v = 

= 7'864.10- 3 mis, lid = 7,1.10- 2
, hs = 

= 6'1.10- 2 , q = 5'95.10- 2 s-l, D = 1. 

.1O- 4 m2 /s 



3042 Stanek, Carsky: 

The study of the frequency responses in the complex plane appears particularly 
attractive in those cases when an explicit expression for the phase shift cannot be 
found. In this case numerical methods transform the shift into the interval 0 - 2n, 
which, of course, poses no problem for plotting in the phase plane. On the con­
trary, processing into the form of the Bode diagrams (amplitude ratio and phase 
lag as functions of the frequency) requires total phase shift, including its integer 
multiples of the full angle. 

The proposed form of discriminating between models in the complex plane stan­
dardizes the routine of parameter evaluation and removes the bias encompassed 
in the parameter evaluation based separately on the amplitude ratio and the phase 
lag. 

LIST OF SYMBOLS 

a 
A 
B 

c = C - cstac 
d 
D 

£1,F1 
f 
GUw) 
G(s) 
II 
1m 
Pe = vZIDh 

Ped = vZIDlld 
q 

R 
RE 

Z 

}'1,2 

A3 •4 

W 

T = liZ Iv 

Td=hd Z / v 

'fI 

Subscripts 

specific interfacial surface [m2 /m3
] 

defined in Eq. (13) 
defined in Eq. (20) 

concentration [k mol/m3
] 

concentration [k mol/m3
] 

diameter [m] 
coefficient of axial dispersion [m2 /s] 
defined in Eq. (13a) 

coefficient in Eq. (2) 
frequency response 
transfer function 
specific hold-up of liquid [m3 /m3

] 

imaginary part of a complex number 
Peclet number 
Peclet number 
coefficient of mass exchange between the dynamic and stagnant liquid [s -1] 

amplitude ratio 
real part of a complex number 
Laplacian variable [s -1] 

time [s] 
superfacial velocity of liquid [m/s] 
axial coordinate 
depth of packed layer [m] 
defined in Eq. (18) 
defined in Eq. (21) 
circular frequency [rad/s] 
mean residence time [s] 
mean residence time [s] 
phase lag [rad] 

stagnant liquid 
o inlet end (z = 0) 
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Z outlet end (z= z) 

column 
st static 
stac steady state 
ef effective 
d dynamic liquid 
p packing 
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